Roll-up of wing and propelled-wing wakes: time- and space-developing LES including comparison to experiments

C. Cottin†, T. Lonfils, R. Cocle and G. Winckelmans

Turbulence and Vortex Group
Université catholique de Louvain (UCL)
Mechanical Engineering Department
Division of Thermodynamics, Fluid Dynamics and Turbomachines (TERM)
Louvain-la-Neuve, Belgium

† Current affiliation: Onera/LML
Context

FAR-Wake: Fundamental Research on Aircraft Wake Phenomena

- WP2: Vortex Interactions with Jets and Wakes
 - UCL contributions:
 LES of wing wake roll-up

Effect of velocity deficit and engine-jets,
Simulation of realistic wakes using Airbus wind-tunnel data

TR222-3 part of D222-2:
Roll-up of a temporally-evolving wing wake with velocity deficit

TR211-6:
Roll-up of a temporally-evolving wing wake in presence of jets

Contribution to D211-3:
Cold-jet effects in relevant multi-vortex configurations, including wake roll-up
Outline

Numerical Tool: The VICPFM Code

I. Roll-up with velocity deficit
 - Wake Model & numerical set-up
 - Results
 - Conclusions

II. Roll-up in presence of jets
 - Initial condition
 - Results & conclusions

III. Realistic multi-vortex wake simulation with comparison to experiments
 - Initial condition: experimental data
 - Results & comparison

Synthesis & Perspectives
Numerical Tool: The VIC-PFM code

Combination of Vortex-In-Cell and Parallel Fast Multipole methods

- **Vortex-In-Cell method:**
 - Combination of *Lagrangian* and *Finite Difference* methods
 - *Vortex Element Methods*: negligible numerical dispersion / dissipation

- **Fast Multipole method:**
 - *Exact* unbounded condition
 - *Compact* computational domain (tight to the vorticity field)
 - *Parallel* implementation: the PFM method

- **LES modelling**
 - UCL’s *Regularized Variational Multiscale (RVM)* subgrid-scale model
 - *Actes* only on the small scale part of the LES field
 - *Preserves* the inertial range
 - Provide *dissipation* to high wavenumbers
 - *Active* in complex phases & *inactive* in laminar / well-resolved regions
Numerical Tool: The VIC-PFM code
Combination of Vortex-In-Cell & Parallel Fast Multipole methods

- **Time-Developing (TD) LES:**
 - Periodic boundary condition in the longitudinal direction
 - 2D (without perturbation) initial condition

- **Space-Developing (SD) LES:**

 ![Diagram of computational domain with labeled regions: Lifting Line, Inflow plane, Outflow plane, Top view, Side view, Ground plane.](image)

 No through-flow symmetry:

 \[
 \omega_n(-x, y, z) = \omega_n(x, y, z) \\
 \omega_t(-x, y, z) = -\omega_t(x, y, z)
 \]

 Vortex- / lifting line-induced velocities
 Freestream velocity

 Space-Time dynamic evolution

 e.g.: wing wake roll-up IGE Daeninck et. al (FW-T.R. 3.1.2-4)
I. Roll-up with velocity deficit
Wake Model: vortex sheet + velocity deficit

Vortex sheet
⇔ axial vorticity field

- Prandtl lifting-line theory applied to an elliptic wing
- Gaussian regularization to obtain a regular, yet thin, vortex sheet

\[
\frac{\sigma}{b} = \frac{1}{75}
\]

Velocity deficit:

- Elliptic spanwise distribution, same regularization parameter
- Maximal velocity deficit parameter: compensates the freestream velocity to respect the no-slip condition at the trailing edge (center of the sheet)
- Corresponding transverse vorticity field (norm):
Simulation Set-Up

<table>
<thead>
<tr>
<th></th>
<th>TD LES</th>
<th>SD LES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Resolution</td>
<td>$\frac{h}{b}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{200}$ (14×10^6 grid points)</td>
<td>$\frac{1}{160}$ (105×10^6 grid points)</td>
</tr>
<tr>
<td>Computational domain length</td>
<td>$L_x = 0.5 \ b$</td>
<td>$L_x = 10 \ b$</td>
</tr>
<tr>
<td>Wing aspect ratio</td>
<td>$Ar = 7.5$</td>
<td>$Ar = 7.5$</td>
</tr>
<tr>
<td>Lift coefficient</td>
<td>$C_L = 1.5$</td>
<td>$C_L = 1.5$</td>
</tr>
<tr>
<td>$Re_\Gamma = \frac{\Gamma}{\nu}$</td>
<td>$10^4 ; 10^6$</td>
<td>10^6</td>
</tr>
<tr>
<td>$\tau_{max} = \frac{t_{max}}{t_0}$</td>
<td>1 ; 0.75</td>
<td>0.33</td>
</tr>
<tr>
<td>$\frac{x_{max}}{b}$</td>
<td>30.4 ; 22.8</td>
<td>8</td>
</tr>
</tbody>
</table>
Results: 3D Dynamics \(\text{Re}_\Gamma = 10^6 \)

\[\tau = 0.01 ; \left(\frac{x}{b} \right) = 0.3 \]
Results: 3D Dynamics - $Re_\Gamma = 10^6$

$\tau = 0.05 ; \left(\frac{x}{b}\right) = 1.5$
Results: 3D Dynamics - $\text{Re}_\Gamma = 10^6$

$\tau = 0.07 ; \left(\frac{x}{b} = 2.1 \right)$
Results: 3D Dynamics - $Re_{\Gamma} = 10^6$

$\tau = 0.25 ; (\frac{x}{b} = 7.6)$
Results: 3D Dynamics - $Re_\Gamma = 10^6$

$$\tau = 0.75 ; \left(\frac{x}{b}\right) = 22.8$$
Results: time evolution of averaged quantities

Vortex Trajectory

Circulation

Vortex core size

- Vortex sheet at $Re_\Gamma = 10^4$
- Wake model at $Re_\Gamma = 10^4$
- Wake model at $Re_\Gamma = 10^6$

$\Delta \Gamma \approx 7.5 \%$
Results: Vortex Structure

\[\tau = 0.5 ; \left(\frac{x}{b} \right) = 15.2 \]

Circulation

Tangential velocity

Perturbation field of axial vorticity in a cross-section:

Vortex Core Deformation

Axial velocity
Conclusions

Effect of the velocity defect due to boundary layers on the wing wake roll-up and resulting vortex system:

- Early stages of the roll-up dynamics greatly affected:
 - Development of successive instabilities
 - Generation of vortical structures surrounding the vortex core
 - Helical vortex core deformation
- Vortex trajectory not affected
- Average resulting vortex structure (after roll-up):
 - Core radius, circulation and tangential velocity profiles not significantly affected
 - Significant axial velocity component inside the vortex core
 - ~7.5% reduction in the circulation Γ_{5-15}
II. Roll-up with velocity deficit in presence of jets
Initial condition & Numerical set-up

- Same wake model with velocity deficit (same wing wake parameters) with 2 added jets in a cruise configuration:
 - Large initial jet/wing tip distance
 - Medium jet to vortex strength ratio: $R = 0.82$
 - Total jet thrust = induced + viscous drag
 (see TR 2.1.1-6 & D 2.1.1-3)

<table>
<thead>
<tr>
<th>TD LES</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{h}{b} = \frac{1}{400}$</td>
</tr>
<tr>
<td>(96 10^6 grid points)</td>
</tr>
<tr>
<td>$L_x = 0.5 \ b$</td>
</tr>
<tr>
<td>$Re\Gamma = 10^6$</td>
</tr>
<tr>
<td>$\tau_{max} = 0.75$</td>
</tr>
<tr>
<td>$\frac{x_{max}}{b} = 22.8$</td>
</tr>
</tbody>
</table>
Results: 3D Dynamics

\[\tau = 0.05 \; ; \; \left(\frac{x}{b} = 1.5 \right) \]
Results: 3D Dynamics

\[\tau = 0.25 ; \left(\frac{x}{b} = 7.6 \right) \]
Results: 3D Dynamics

\[\tau = 0.75 ; \left(\frac{x}{b} = 22.8 \right) \]
Results & Conclusions

- Similar dynamics to that without jets: jets and velocity deficit have similar 3D effects (instabilities, vortical structures, core deformation)
- The jet fluid does not penetrate the vortex core: the resulting vortex structure is not significantly affected
III. Roll-up of an experimental multi-vortex wake configuration including jets
Initial condition & Numerical set-up

- Multi-vortex wake wind tunnel data (provided by Airbus):
 - Thrust for level flight: total thrust = total drag
 - Deflected flap \rightarrow multi vortex wake

- 3 components of velocity at two downstream positions:
 $\frac{x}{b} = 0.3 ; 1.3$
 $(\tau = 0.007 ; 0.03)$

<table>
<thead>
<tr>
<th></th>
<th>Numerical Resolution $\frac{h}{b}$</th>
<th>Computational domain length</th>
<th>$\tau_{\text{max}} = \frac{t_{\text{max}}}{t_0}$</th>
<th>$\frac{x_{\text{max}}}{b}$</th>
<th>$\text{Re}_\Gamma = \frac{L}{\nu}$</th>
<th>Lift Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expe.</td>
<td>$\frac{1}{100}$</td>
<td>—</td>
<td>0.03</td>
<td>1.3</td>
<td>2×10^6</td>
<td>1.76</td>
</tr>
<tr>
<td>TD LES</td>
<td>$\frac{1}{200}$</td>
<td>$L_x = b$</td>
<td>1.1</td>
<td>35.1</td>
<td>2×10^6</td>
<td>1.76</td>
</tr>
<tr>
<td>(24 10^6 grid points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD LES</td>
<td>$\frac{1}{200}$</td>
<td>$L_x = 5 , b$</td>
<td>0.16</td>
<td>5</td>
<td>2×10^6</td>
<td>1.76</td>
</tr>
<tr>
<td>(45 10^6 grid points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: 3D TD Dynamics \[\tau = 0.03 ; \left(\frac{x}{b} \right) = 1.3 \]
Results: 3D TD Dynamics

$\tau = 0.09$; $(\frac{x}{b} = 3.1)$
Results: 3D TD Dynamics \[\tau = 0.22 \; ; \; \left(\frac{x}{b} \right) = 7.3 \]
Results: 3D TD Dynamics

\[\tau = 0.63 \; ; \; \left(\frac{x}{b} \right) = 20.2 \]
Results: 3D SD Dynamics

SD vs. TD
Averaged axial vorticity & velocity fields at $\frac{x}{b} = 4.3$
Comparison Expe. / TD LES / SD LES

\[\frac{x}{b} = 1.3 \]

TD – Space averaged vs. expe.

SD – Time averaged vs. expe.

Axial vorticity

Axial velocity

Transverse vorticity norm
Comparison of the averaged vortex structure

- LES inboard vortex
- LES outboard vortex
+ Expe. inboard vortex
● Expe. outbound vortex
Synthesis & Perspectives

Roll-up & vortex interaction with wing wakes and jets

- Both jet and deficit highly unstable during roll-up in both wake model and experimental multi-vortex wake: 3D dynamics, vortical structures, core deformation
- Resulting averaged vortex structure weakly affected except the strong axial velocity component concentrated in the vortex core

Numerical method: the VIC-PFM code

- Hight quality of both TD and SD simulations ➔ predictive tool
- SD: more suitable for highly spatially-evolving flows (➔ axial velocity): jets, early stages of wake roll-up
- TD: relative low cost, gives access to the “FAR-Wake” dynamics
- Further developments to include immersed-boundary methods for simulations of flows past bodies (ongoing work, T. Lonfils)